WBCS (Main) Exam Paper - VI Practice Set

Answers with Explanation

1. (a) $1000=(45 \times 22)+10$
$\therefore 45-10=35$ to be added.
So, the smallest number to be added to 1000 to make the sum exactly divisible by 45 is 35 .
2. (b) Let the number be x.
$\therefore \frac{\mathrm{x}+12}{6}=112$
$\Rightarrow \mathrm{x}+12=672$
$\Rightarrow x=672-12=660$
\therefore Correct answer $=\frac{660}{6}+12$
$=110+12=122$
3. (b) Let the fractions be x and y , where $\mathrm{x}>\mathrm{y}$
$\therefore \mathrm{xy}=\frac{14}{15}$ and $\frac{\mathrm{x}}{\mathrm{y}}=\frac{35}{24}$
$\therefore \mathrm{xy} \times \frac{\mathrm{x}}{\mathrm{y}}=\frac{14}{15} \times \frac{35}{24}$
फुपापिएस
$\Rightarrow x^{2}=\frac{49}{36}$
$\Rightarrow \mathrm{x}=\frac{7}{6}$
4. (a) HCF of two-prime numbers $=1$
\therefore Product of numbers $=$ their
LCM $=117$
$117=13 \times 9$ where $13 \& 9$ are co-prime. L.C.M $(13,9)=117$.
5. (b) Using Rule 5,

Here, $12-5=7$,
$16-9=7$
\therefore Required number
$=($ L.C.M. of 12 and 16) -7
$=48-7=41$
6. (d) First of all we find HCF of 391 and 323.
323) 391 (1
$\frac{323}{68) 323(4}$
$\frac{272}{51) 68(1}$
$\frac{51}{17) 51}(3$
$\frac{51}{\times}$
\therefore Number of classes $=17$
7. (a) $\frac{4 \frac{1}{7}-2 \frac{1}{4}}{3 \frac{1}{2}+1 \frac{1}{7}}=\frac{\frac{29}{7}-\frac{9}{4}}{\frac{7}{2}+\frac{8}{7}}$

$$
=\frac{\frac{116-63}{28}}{\frac{49+16}{14}}=\frac{53}{28} \times \frac{14}{65}=\frac{53}{130}
$$

खुप्ञिय

Again,

$=\frac{1}{2+\frac{1}{\frac{48+5}{24}}}=\frac{1}{2+\frac{24}{53}}$
$=\frac{1}{\frac{106+24}{53}}=\frac{53}{130}$
\therefore Expression $=\sqrt{\frac{53}{130} \div \frac{53}{130}}=1$
8. (d) We have

$$
\begin{aligned}
& \frac{5}{3} \div \frac{2}{7} \times \frac{*}{7}=\frac{5}{4} \times \frac{2}{3} \times 6 \\
& \Rightarrow \frac{5}{3} \times \frac{7}{2} \times \frac{*}{7}=\frac{5 \times 2 \times 6}{4 \times 3} \\
& \therefore *=\frac{5 \times 2 \times 6 \times 3 \times 2 \times 7}{5 \times 7 \times 4 \times 3}=6
\end{aligned}
$$

9. (b) Expression

काািির্জ

$$
\begin{aligned}
& =\sqrt{\frac{5}{4} \times \frac{64}{125} \times 1.44} \\
& =\sqrt{\frac{16}{25} \times \frac{144}{100}}=\frac{4}{5} \times \frac{12}{10}=\frac{24}{25}
\end{aligned}
$$

10. (b) Difference

$$
=83-53=30
$$

Incorrect observation > Correct observation
\therefore Required average
$=35-\frac{30}{100}=35-0.3=34.7$
क्यापि४र्य
11. (b) Person's income in the eighth month
$=₹(3160 \times 8+5 \times 4120-12 \times 3400)$
$=₹(25280+20600-40800)=₹ 5080$
12. (b) Sum of new numbers
$=\mathrm{na}+(2+4+8+16 \ldots$. to n terms $)$
Now, $S=2+4+8+16+$ \qquad to n terms
Here, $\mathrm{a}=$ first term $=2$
$r=$ common ratio $=\frac{4}{2}=2$
It is a geometric series.
$\therefore \mathrm{S}=\frac{\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right)}{\mathrm{r}-1}=\frac{2\left(2^{\mathrm{n}}-1\right)}{2-1}=2\left(2^{\mathrm{n}}-1\right)$
\therefore Required average
$=\frac{n a+2\left(2^{n}-1\right)}{n}=a+\frac{2\left(2^{n}-1\right)}{n}$
13. (b) $\frac{\mathrm{A}}{\mathrm{B}}=\frac{4}{5} ; \frac{\mathrm{B}}{\mathrm{C}}=\frac{5}{2}$
$\therefore \frac{\mathrm{A}}{\mathrm{C}}=\frac{\mathrm{A}}{\mathrm{B}} \times \frac{\mathrm{B}}{\mathrm{C}}=\frac{4}{5} \times \frac{4}{2}=2: 1$
14. (d) $\mathrm{A}: \mathrm{B}=1: 2=3: 6$
$B: C=3: 4=6: 8$
$C: D=6: 9=2: 3=8: 12$
$\mathrm{D}: \mathrm{E}=12: 16$
$\therefore \mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D}: \mathrm{E}$
$=3: 6: 8: 12: 16$
15. (c) Let the present age of two brothers be x and 2 x years.
Now, $\frac{x-5}{2 x-5}=\frac{1}{3}$
$\Rightarrow 3 \mathrm{x}-15=2 \mathrm{x}-5$
$\Rightarrow 3 \mathrm{x}-2 \mathrm{x}=15-5$
$\Rightarrow \mathrm{x}=10$
\therefore Their present age
$=10$ and 20 years
फुण্ভির্स
After 5 years their required ratio
$=\frac{15}{25}=\frac{3}{5}=3: 5$
16. (b) $\mathrm{A} \times \frac{90}{100}=\frac{\mathrm{B} \times 30}{100}$
$\Rightarrow \mathrm{A} \times 3=\mathrm{B}$
$\Rightarrow \mathrm{A} \times \mathrm{x} \%=\mathrm{A} \times 3$
$\Rightarrow \frac{\mathrm{x}}{100}=3 \Rightarrow \mathrm{x}=300$
17. (b) Males $=25000 \times \frac{4}{5}=20000$

Females $=5000$
Educated males $=20000 \times \frac{95}{100}=19000$
ख्याগ্ভির্ম
Educated females $=\frac{5000 \times 60}{100}=3000$
Total educated persons $=22000$
\therefore Required per cent $=\frac{22000}{25000} \times 100=88 \%$
18. (a) X is 20% less than Y .

If $Y=100, X=80$
$\therefore \frac{Y-X}{Y}=\frac{100-80}{100}=\frac{20}{100}=\frac{1}{5}$
$\frac{X}{X-Y}=\frac{80}{80-100}=\frac{80}{-20}=-4$
19. (a) Required profit per cent $=\frac{10-9}{9} \times 100$
$=\frac{1}{9} \times 100=11 \frac{1}{9} \%$
20. (c) Here, selling prices are same,

Profit-loss percent are same.
In such transactions, there is always loss.
Loss percent $=\frac{10 \times 10}{100}=1 \%$
21. (d) Total actual C.P.
$=₹(500 \times 10+2000)=₹ 7000$
And total S.P.
$=₹(5 \times 750+5 \times 550)$
$=₹(3750+2750)=₹ 6500$
Loss $=7000-6500=₹ 500$
Loss percent $=\frac{500}{7000} \times 100=\frac{50}{7}=7 \frac{1}{7} \%$
22. (b) Case I : A single discount of 30%

Case II : Two successive discounts of 20% and 10%
Single equivalent discount
$=\left(20+10-\frac{20 \times 10}{100}\right) \%=28 \%$
काष্ভির্ম
Difference $=(30-28) \%=2 \%$
\therefore Required difference $=2 \%$ of 550
$=₹ \frac{2 \times 550}{100}=₹ 11$.
23. (b) Single equivalent discount for successive discounts of 10% and 20%.
$=\left(10+20-\frac{20 \times 100}{100}\right) \%=28 \%$
Single equivalent discount for 28% and 30%.
$=\left(28+30-\frac{28 \times 30}{100}\right) \%=49.6 \%$
24. (c) Single equivalent discount for 8% and 5%
$=\left(8+5-\frac{8 \times 5}{100}\right) \%$
$=(13-0.4)=12.6 \%$
खुप्षियन
Single equivalent disconut for 12.6% and 2%
$=\left(12.6+2-\frac{12.6 \times 2}{100}\right) \%$
$=14.6-0.252=14.348 \%$
\therefore Net S.P. $=(100-14.348) \%$ of 7500
$=\frac{7500 \times 85.652}{100}=₹ 6423.90$
25. (a) Equal instalment $=\frac{6450 \times 200}{4[200+(4-1) \times 5]}$
$=\frac{6450 \times 200}{4(215)}=\frac{6450 \times 50}{215}=₹ 1500$
26. (d) If principal $=x$ and rate $=r \%$ per annum, then
$1380=x+\frac{x \times 3 \times r}{100}$
आাড্ভির্ম
$1500=x+\frac{x \times 5 \times r}{100}$
S.I. for two years $=1500-1380=₹ 120$
$\therefore \frac{\mathrm{x} \times 2 \times \mathrm{r}}{100}=120$
$\therefore \frac{\mathrm{xr}}{100}=60$
\therefore From equation (i)
$1380=x+60 \times 3$
$\Rightarrow \mathrm{x}=1380-180=₹ 1200$
From equation (iii)
$\frac{1200 \times r}{100}=60$
$\Rightarrow \mathrm{r}=\frac{6000}{1200}=5 \%$ per annum
27. (d) Difference in rates $=8-5=3 \%$

काप্ভির্स
$\because 3 \%=2320-2200=120$
$\therefore 5 \% \equiv \frac{120}{3} \times 5=200$
\therefore Principal $=$ Rs. $(2200-200)=₹ 2000$
\therefore Time $=\frac{200 \times 100}{2000 \times 5}=2$ years
28. (c) $\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{T}}$
$\Rightarrow 30000+4347$

$$
\begin{aligned}
& =30000\left(1+\frac{7}{100}\right)^{\mathrm{T}} \\
& \Rightarrow \frac{34347}{30000}=\left(\frac{107}{100}\right)^{\mathrm{T}} \\
& \Rightarrow \frac{11449}{10000}=\left(\frac{107}{100}\right)^{2}=\left(\frac{107}{100}\right)^{\mathrm{T}} \\
& \Rightarrow \text { Time }=2 \text { years }
\end{aligned}
$$

29. (a) $\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{T}}$

$$
\begin{aligned}
& \Rightarrow 2420=\mathrm{P}\left(1+\frac{10}{100}\right)^{2} \\
& \Rightarrow 2420=\mathrm{P}\left(1+\frac{1}{10}\right)^{2}=\mathrm{P}\left(\frac{11}{10}\right)^{2} \\
& \Rightarrow \mathrm{P}=\frac{2420 \times 10 \times 10}{11 \times 11}=₹ 2000
\end{aligned}
$$

खुাি্ির্জ

30. (b) $\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{T}}$
$\Rightarrow 2916=x\left(1+\frac{8}{100}\right)^{2}$
$\Rightarrow 2916=x\left(\frac{27}{25}\right)^{2}$
$\Rightarrow \mathrm{x}=\frac{2916 \times 25 \times 25}{27 \times 27}=₹ 2500$
\therefore S.I. $=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}$
$=\frac{2500 \times 9 \times 3}{100}=₹ 675$
31. (d) $(\mathrm{A}+\mathrm{B})$'s 1 day's work
$=\frac{1}{6}+\frac{1}{12}=\frac{2+1}{12}=\frac{1}{4}$
खुप्रिিर्य
$\therefore \mathrm{A}$ and B together will complete the work in 4 days.
32. (d) Women Length Days

$\left.\therefore \begin{array}{r}10: 20 \\ 100: 50\end{array}\right\}:: 10: \mathrm{x}$
$\Rightarrow 10 \times 100 \times x=20 \times 50 \times 10$
$\Rightarrow \mathrm{x}=\frac{20 \times 50 \times 10}{1000}=10$ days
33. (c) Koushik's 1 day's work $=\frac{1}{x}$

Krishnu's 1 day's work $=\frac{1}{\mathrm{y}}$
\therefore One day's work of both $=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{x y}$
\therefore Required time $=\frac{x y}{x+y}$ days
34. (b) Part of the cistern filled by pipe Q in 1 minute $=\frac{1}{20}-\frac{1}{30}=\frac{3-2}{60}=\frac{1}{60}$
\therefore Required time $=60$ minutes
35. (a) Time taken to fill the $\frac{3}{5}$ of the cistern $=60$ seconds
Time taken in filling $\frac{2}{5}$ part
$=\frac{60 \times 5}{3} \times \frac{2}{5}=40$ seconds
36. (b) $\because P<q$,
\therefore On opening pipe and sink together, Part of the tub filled in 1 hour $=\frac{1}{P}-\frac{1}{q}$

Clearly, $\frac{1}{\mathrm{P}}-\frac{1}{\mathrm{q}}=\frac{1}{\mathrm{r}}$
37. (a) Time $=10 \frac{1}{2}=\frac{21}{2}$

आ্ডাভির্ম
Speed $=40 \mathrm{kmph}$
Distance $=$ Speed \times Time
$=40 \times \frac{21}{2}=420 \mathrm{~km}$.
38. (b) Men's speed $=\frac{\text { Distance }}{\text { Time }}=\frac{\mathrm{a}}{\mathrm{b}} \mathrm{kmph}$ $=\frac{1000 \mathrm{a}}{\mathrm{b}} \mathrm{m} /$ hour
\therefore Time taken in walking 200 metre
$=\frac{200}{\frac{1000 \mathrm{a}}{\mathrm{b}}}=\frac{\mathrm{b}}{5 \mathrm{a}}$ hours
39. (a) Average speed of journey

कुण्डिर्य
$=\left(\frac{2 x y}{x+y}\right) \mathrm{kmph}$
$=\frac{2 \times 40 \times 50}{40+50}=\frac{2 \times 40 \times 50}{90}$
$=\frac{400}{9}=44 \frac{4}{9} \mathrm{kmph}$
40. (a) Speed in still water $=x \mathrm{~km} / \mathrm{h}$

Speed of current $=y \mathrm{~km} / \mathrm{h}$
$\therefore x+y=\frac{1}{\frac{4}{60}}=15$
फ़ाप्षिय
$x-y=\frac{1}{\frac{10}{60}}=6$
\therefore Speed of current $=\frac{1}{2}[(\mathrm{x}+\mathrm{y})-(\mathrm{x}-\mathrm{y})]$
$=\frac{1}{2}(15-6)=\frac{9}{2}=4.5 \mathrm{~km} / \mathrm{h}$
41. (a) Rate downstream $=18 \mathrm{kmph}$

Rate upstream $=12 \mathrm{kmph}$
\therefore Speed of boat in still water
$\frac{1}{2}$ (rate downstream + rate upstream)
$=\frac{1}{2}(18+12)=15 \mathrm{kmph}$
खुप्षिर्य
42. (b) Let the speed of boat in still water be x kmph and the distance be y km .
\therefore Rate downstream $=(\mathrm{x}+1.5) \mathrm{kmph}$
Rate upstream $=(x-1.5) \mathrm{kmph}$
According to the question,
$\frac{y}{x+1.5}=3$
$\frac{y}{x-1.5}=\frac{7}{2}$
On dividing equation (i) by (ii),
$\frac{x-15}{x+15}=\frac{3 \times 2}{7}=\frac{6}{7}$
$\Rightarrow 7 \mathrm{x}-10.5=6 \mathrm{x}+9$
$\Rightarrow \mathrm{x}=10.5+9=19.5 \mathrm{kmph}$.
43. (a) Area of paper $=$ Area of square + Area of equilateral triangle
$\frac{1}{2}(\text { diagonal })^{2}+\frac{\sqrt{3}}{4} \times(\text { side })^{2}$
$=\frac{1}{2} \times 32 \times 32+\frac{\sqrt{3}}{4} \times 8 \times 8$
$=512+16 \times 1.732$
$=512+27.712=539.712 \mathrm{~cm}^{2}$
[Note : Diagonal of a square $=\sqrt{2}$ side]
44. (c)

D is the mid-point of AB and E is the midpoint of AC.
$\therefore \mathrm{DE}$ is parallel to BC .
and $D E=\frac{1}{2} B C$
$\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$ are similar, because
$\underline{D}=\underline{B}$ and $\underline{E}=\mid \mathrm{C}$
$\therefore \frac{\triangle \mathrm{ADE}}{\triangle \mathrm{ABC}}=\frac{\mathrm{DE}^{2}}{\mathrm{BC}^{2}}=\frac{1}{4}$
$\Rightarrow 4 \Delta \mathrm{ADE}=\Delta \mathrm{ABC}$
\therefore Area of trapezium $\mathrm{DBCE}=\triangle \mathrm{ABC}-\triangle \mathrm{ADE}$
$4 \Delta \mathrm{ADE}-\triangle \mathrm{ADE}=3 . \Delta \mathrm{ADE}$
फ्याप्षिस
\therefore Required percentage $=\frac{3}{4} \times 100=75 \%$
45. (d) Area of the trapezium $=\frac{1}{2}$ (sum of parallel sides) \times altitude
$\Rightarrow 450=\frac{1}{2}(3 \mathrm{x}+2 \mathrm{x}) \times 15$
$\Rightarrow 5 x=\frac{450 \times 2}{15}=60 \mathrm{~cm}$
46. (b)

Obviously, the triangle ABC will be equilateral.
$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=2 \mathrm{~cm}$.
Area of $\triangle \mathrm{ABC}$
$=\frac{\sqrt{3}}{4} \times 2 \times 2=\sqrt{3} \mathrm{~cm}^{2}$
Then, area ' A ' of the three sectors each of angle 60° in a circle of radius 1 cm .
$\mathrm{A}=3 \times \frac{60}{360} \times \pi \times 1=\frac{\pi}{2}$
कुप्षिर्य
\therefore Area of the shaded portion $=\left(\sqrt{3}-\frac{\pi}{2}\right) \mathrm{cm}^{2}$.
47. (a) We know that

Area of circle $=\pi r^{2}$

According to question, $\pi \mathrm{r}^{2}=38.5$
$\Rightarrow \mathrm{r}^{2}=\frac{38.5}{22} \times 7=(3.5)^{2}$
$\Rightarrow \mathrm{r}=3.5 \mathrm{~cm}$
\therefore Circumference of circle
$=2 \pi \mathrm{r}=2 \times \frac{22}{7} \times 3.5=22 \mathrm{~cm}$
48. (b) Length of the rubber band

फ्राप्षिज्य
$=3 \mathrm{~d}+2 \pi \mathrm{r}$
$=(30+10 \pi) \mathrm{cm}$
49. (d) LCM of indices of surds
$=\mathrm{LCM}$ of $6,3,4$ and $2=12$
$\therefore \sqrt[6]{12}=\sqrt[12]{12^{2}}=\sqrt[12]{144}$
$\sqrt[3]{4}=\sqrt[12]{4^{4}}=\sqrt[12]{256}$
$\sqrt[4]{5}=\sqrt[12]{5^{3}}=\sqrt[12]{125}$
$\sqrt{3}=\sqrt[12]{3^{6}}=\sqrt[12]{729}$
\therefore The smallest surd $=\sqrt[4]{5}$
50. (a) $\sqrt{15}=3.88$ (Given)

Now, $\sqrt{\frac{5}{3}}=\sqrt{\frac{5 \times 3}{3 \times 3}}=\frac{\sqrt{15}}{3}$

आাড্ভির্ন

$=\frac{3.88}{3}=1.29 \overline{3}$
51. (c) Pen is filled with ink. Similarly, vein is filled with blood.
52. (a) The water in river flows. The water in pool remains stagnant.
53. (c) Tongue is used to taste something. Similarly, leg is used to walk.
54. (b) Quack is the voice of Duck. Similarly, Neigh is the voice of Horse.
55. (b) $580 \Rightarrow 5+8+0=13$
$265 \Rightarrow 2+6+5=13$
$373 \Rightarrow 3+7+3=13$
Similarly,
$490 \Rightarrow 4+9+0=13$
56. (d) $536 \Rightarrow 5+3+6=14$
$428 \Rightarrow 4+2+8=14$
$365 \Rightarrow 3+6+5=14$
खाप্ভির্स
Similarly,
$266 \Rightarrow 2+6+6=14$
57. (a) $\left.\begin{array}{rl}210 & =(15)^{2}-15 \\ 380 & =(20)^{2}-20\end{array}\right] 15+5=20$
$182=(14)^{2}-14$
$14+5=19$
Therefore, ? $=(19)^{2}-19$
$=361-19=342$
58. (a)

फ़ापिएय

Obviously, O is the husband of P , hence P is wife of O. Now M is son of P. So M's parents are P (mother) and O (father).
Hence M is O's son.
59. (c) D is the father of C .

C is mother of A and B .
E is son of B.
Therefore, D is great grandfather of E .
60. (c) Shubha is granddaughter of Sheela, who is sister of Pramod.
Rahul is son of Pramod.
Therefore, Rahul is uncle of Sheela.
61. (a)

$+\Rightarrow-$	$-\Rightarrow \times$
$\div \Rightarrow+$	$\times \Rightarrow \div$

$10 \times 5 \div 3-2+3=$?
or, ? $=10 \div 5+3 \times 2-3$
or, $?=2+6-3=5$
62. (c)

$-\Rightarrow+$	$+\Rightarrow-$
$\times \Rightarrow \div$	$\div \Rightarrow x$

? $=7-10 \times 5 \div 6+4$
$\Rightarrow ?=7+10 \div 5 \times 6-4$
$\Rightarrow ?=7+2 \times 6-4$
$\Rightarrow ?=7+12-4=15$
63. (c)

$\mathrm{P} \Rightarrow+$	$\mathrm{Q} \Rightarrow-$
$\mathrm{R} \Rightarrow \div$	$\mathrm{S} \Rightarrow \times$

18 S 36 R 12 Q 6 P $7=$?
or, $?=18 \times 36 \div 12-6+7$
or, ? $=18 \times 3-6+7$
or, ? $=54-6+7$
or, ? $=61-6=55$
64. (c) Except Late, all other words convey more or less similar meaning.
65. (a) Except Earth-Moon, in all other pairs the first belongs to the second.
66. (d) Rupee, Pound and Yen are currencies of different countries.

आ m্ভির্স
67. (b) Colonialism is the policy of acquiring colonies and keeping hem dependent. All other words refer to something that exists in thouth or as an idea.
68. (d)

खुাি্িির্গ

It is clear from the diagram that Ashok was in South direction from the starting point.
69. (b)

Now she if facing towards west.
70. (d)

Now, Ramesh is facing South.
फुाणिির্জ
71. (c)

खাভিভির্ম

Required distance
$=10+5=15 \mathrm{~km}$.
72. (d) The day before yesterday was Tuesday Today, it is Tuesday $+2=$ Thursday
Tomorrow \Rightarrow Friday
The day after tomorrow \Rightarrow Saturday
73. (c) Last Monday was December 29, 1975.

Tuesday \rightarrow December 30,1975
Wednesday \rightarrow December 31, 1975
Thursday \rightarrow January 1, 1976
फ़ापिएर्य
Friday \rightarrow January 2, 1976
74. (d) A leap year is completely divisible by 4. In case of century years, only those divisible by 400 are leap years.

$$
\begin{aligned}
& \frac{2000}{400}=5 ; \frac{2004}{4}=501 ; \frac{1996}{4}=499 \\
& \text { But, } \frac{1966}{4}=491.5
\end{aligned}
$$

ত্যাহ্ভির্শ
75. (c) The given number series is based on the following pattern :
$3+7=10 ; 10+10=20$
$20+13=33 ; 33+16=49$
$49+19=68 ; 68+22=90$
76. (a) $5+2=7$
$2+7=9$
$7+9=16$
$9+16=25$
$16+25=41$
77. (d)

78. (c) 14

79. (a) $\mathrm{A}=1 \Rightarrow$ Position Number in the English alphabet.

F	A \quad T	
\downarrow	\downarrow	\downarrow
6	+1	$+20=27$

खुपापि४र्य

Therefore,
$\begin{array}{ccccc}\text { F } & \text { A } & \text { I } & \text { T } & \text { H } \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow\end{array}$
$6+1+9+20+8=44$
80. (c) C A L C U T T A D E L H I

Therefore,
C ALI CUT
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
8251896
81. (a) E N T R Y
$\downarrow \downarrow \downarrow \downarrow \downarrow$
12345
ख्याप्डिय
And,
S T E A D Y
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
931785

Therefore
A R R E S T
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
744193
سাড্ভির্শ
82. (a) There is no ' R ' letter in the given word. Therefore, the word ALERT cannot be formed.

LEGALIZ ATION
$\Rightarrow \mathrm{ALEGATION}$
L E GAL I Z A T I O N
\Rightarrow G A L L A N T
L E G A L I Z AT I O N
$\Rightarrow \mathrm{N}$ A T A L
फ़ाजिएर्स
83. (c) There is only one ' T ' in the given word.

So, the word TABLET cannot be formed.
R O T A R Y B L U E $S \Rightarrow$ STARY
$R \quad \mathrm{OT}$ A R Y B LU E $S \Rightarrow$ LOTUS
R O T A R Y BLUE $S \Rightarrow$ BUTLER
84. (a) There is no ' Y ' letter in the given word. Therefore, the word MERCY cannot be formed.

खाप्डिस्स
C U M B ER SOME \Rightarrow MOUSE
C U M BERSO ME \Rightarrow SOBER
C U M B E R S OME ROME
85. (c) First Premise is Universal Negative (E-type). Second Premise is Universal Affirmative (Atype).
We can align the Premises by Converting the first Premise and changing their order. Thus, All Women are Intelligent.

No Intelligent is a man.
We know that,
$\mathrm{A}+\mathrm{E} \Rightarrow$ E-type Conclusion
Thus our derived Conclusion would be :
"No woman is a man"
This is the Conclusion II.
Conclusion I is the Converse of this Conclusion
Therefore, both the Conclusions
खुपा पिए I and II follow.
86. (b) First Premise is Particular Affirmative (I-type) Second Premise is Universal Affirmative (Atype).

Some shoes are white.

धुपाज्जियन
All white are blue.
I $+\mathrm{A} \Rightarrow$ I-type of Conclusion
"Some shoes are blue."
This is Conclusion II.
87. (c) First Premise is Universal Affirmative (A-type).

Second Premise is Universal Negative (Etype).
All frogs are tortoises.

No tortoise is a crocodile.
$\mathrm{A}+\mathrm{E} \Rightarrow$ E-type of Conclusion
"No frog is a crocodile".
This is Conclusion II.
Conclusion I is Converse of this Conclusion.
88. (a) $\mathrm{B}=2 \mathrm{~A}$
$F=2 B$
खाাঙির্র্স
$A=2 C$
$\mathrm{C}=2 \mathrm{D}$
$\Rightarrow F=2 B=4 A=8 C=16 D$
$\mathrm{F}>\mathrm{B}>\mathrm{A}>\mathrm{C}>\mathrm{D}$
Hence second oldest is B .
89. (a) According to question
$\mathrm{D}>\mathrm{C}>\mathrm{A}>\mathrm{B}$
Therefore, D is the fastest runner.
90. (c) Babu > Jill > Mani
$\mathrm{z}>\mathrm{x}>\mathrm{y}$
or, $\mathrm{y}<\mathrm{x}<\mathrm{z}$
91. (b) First figure
$(6 \times 5)+(3 \times 3)=30+9=39$
Second figure
$(7 \times 5)+(4 \times 4)=35+16=51$
Third figure
$(5 \times 5)+(3 \times 4)=25+12=37$
92. (b) Align $3+18=21$
$4+23=27$
$?+27=33$
$\therefore ?=33-27=6$
93. (c) First figure : $6 \times 6=4 \times 9$

Second figure : $9 \times 8=24 \times 3$
Third figure : $15 \times 6=9 \times$?
$\therefore ?=\frac{90}{9}=10$
फुाप्डिस
94. (b) $24+22=46$
$27+42=69$
$\therefore ?=79-38=41$
95. (a) The sum of upper two numbers gives the lower right number while their product is equal to the lower left number.
First arrangement
$5+4=9$ and $5 \times 4=20$
Second arrangement
खाডিষির্স
$3+8=11$ and $3 \times 8=24$
Third arrangement
$9+4=13$ and $9 \times 4=36$
96. (b) Suppose the age of A is x years and that of B is y years.
According to question,
$x=y+16$
or, $x-y=16$
Again, $\frac{x}{3}=\frac{y}{2}$
or, $2 \mathrm{x}=3 \mathrm{y}$
or, $2 x-3 y=0$
From equations (i) and (ii)
$\mathrm{x}=48$ years
$\therefore \mathrm{y}=48-16=32$ years
Thus, $\mathrm{A}=48$ years

$B=32$ years
97. (a) Descending Order
e. Lt. General
d. Brigadier
\downarrow
c. Colonel
a. Major
b. Captain
98. (b) Meaningful order :
d. Student

99. (d) The number 4 will lie opposite 5.
100. (a) The numbers 1, 2, 3 and 6 lie on the faces adjacent to the number 5. Therefore, the number 5 lies opposite 4.

